树德中学高 2019 级高三上学期 10 月阶段性测试数学(文科) 试题

满分: 150 分 命题、审题: 高三数学备课组 考试时间: 120 分钟

一、选择题(本大题共12小题,每小题5分,共60分,每道题4个选项中只有一个符合题目要求)。

1. 设集合
$$A = \left\{ x \in N^* \middle| x^2 - 2x < 0 \right\}$$
, $B = \left\{ x \middle| \frac{1}{2} \le x \le 3 \right\}$, 则 $A \cap B =$

A.
$$\left\{ x \middle| \frac{1}{2} \le x < 2 \right\}$$
 B. $\left\{ x \middle| \frac{1}{2} < x \le 3 \right\}$ C. $\left\{ 1 \right\}$ D. $\left\{ 1, 2 \right\}$

- 2. 已知₇是虚数 z 的共轭复数,则下列复数中一定是纯虚数的是
 - A. $_{7+7}^{-}$
- B. $_{7-7}$ C. $_{7\cdot7}$ D. $_{=}^{7}$

- 3. 某市物价部门对 5 家商场的某商品一天的销售量及其价格进行调查, 5 家商场的售价 x (元) 和销售量
- y (件) 之间的一组数据如表所示:

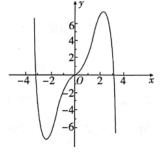
(11 / 10 1 (14) 1 majorate / 1					
价格x	9	9 9.5	10	10.5	11
销售量y	11	11 10	8	6	5

按公式计算,y与x的回归直线方程是: y=-3.2x+a,相关系数|r|=0.986,则下列说法错误的是

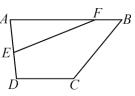
- A. $\mathfrak{g} = x$, y 线性负相关且相关性较强;
- B. $\hat{a} = 40$;
- C. 当x = 8.5 时, y 的估计值为 12.8;
- D. 相应于点(10.5,6)的残差为 0.4.
- 4. 若数列 $\{a_n\}$ 的前n项和为 S_n ,则" $S_n = \frac{n(a_1 + a_n)}{2}$ "是"数列 $\{a_n\}$ 是等差数列"的
 - A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
- 5. 己知函数 $f(x) = e^{|x|}$, $g(x) = \sin x$, 某函数的部分图象如图所示,则该

函数可能是

- A. y = f(x) + g(x)
- B. y = f(x) g(x)
- C. y = f(x)g(x) D. $y = \frac{g(x)}{f(x)}$



- 6. 如图,在梯形 ABCD 中,AB//DC,AB=2CD,E 为线段 AD 的中点,且 4BF=AB,则 $\overline{EF}=AB$
- A. $\frac{1}{2}\overrightarrow{DC}+\overrightarrow{BC}$
- B. $\frac{1}{2}\overrightarrow{DC} \overrightarrow{BC}$
- C. $\overrightarrow{DC} + \frac{1}{2}\overrightarrow{BC}$ D. $\overrightarrow{DC} \frac{1}{2}\overrightarrow{BC}$

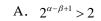


- 7. 曲线 $y = ax \cos x + 16$ 在 $x = \frac{\pi}{2}$ 处的切线与直线 y = x + 1 平行,则实数 a 的值为
- A. $-\frac{2}{\pi}$ B. $\frac{2}{\pi}$ C. $\frac{\pi}{2}$

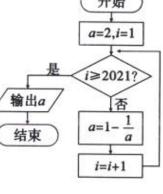
- 8. 若执行如右图所示的程序框图,则输出的结果为
- A. $\frac{1}{2}$ B. -1

错误的是

- C. 1
- 9. 己知正数 α , β 满足 $e^{\alpha} + \frac{1}{2\beta + \sin \beta} > e^{\beta} + \frac{1}{2\alpha + \sin \alpha}$, 则下列不等式



- B. $ln\alpha + \alpha < ln\beta + \beta$
- C. $\frac{1}{\alpha} + \frac{1}{\beta} > \frac{4}{\alpha + \beta}$ D. $\frac{1}{e^{\alpha}} + \frac{1}{\alpha} < \frac{1}{e^{\beta}} + \frac{1}{\beta}$



10. 已知四面体 ABCD 的所有棱长均为 $\sqrt{2}$, M, N 分别为棱 AD, BC 的中点, F 为棱 AB 上异于 A, B 的 动点. 有下列结论: ①线段 MN 的长度为 1; ②若点 G 为线段 MN 上的动点,则无论点 F 与 G 如何运动,

直线 FG 与直线 CD 都是异面直线; ③ $\angle MFN$ 的余弦值的取值范围为 $[0,\frac{\sqrt{5}}{5})$; ④ $\triangle FMN$ 周长的最小值为

 $\sqrt{2}+1$. 其中正确结论的为

- A. (1)(2)

11. 已知 $f(x) = \sin\left(\omega x + \frac{\pi}{3}\right)(\omega > 0)$, $f\left(\frac{\pi}{6}\right) = f\left(\frac{\pi}{3}\right)$,且 f(x) 在区间 $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ 上有最小值,无最大值,则 $\omega = \frac{\pi}{3}$

- A. $\frac{2}{3}$ B. $\frac{14}{3}$ C. $\frac{14}{3}$ $\cancel{\mathbb{R}} \frac{38}{3}$ D. $\left\{ \omega \middle| \omega = 8k \frac{10}{3}, k \in \mathbb{Z} \right\}$

12. 双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左顶点为A,右焦点为F,离心率为2,焦距为4.设M是双曲线C

上任意一点,且M在第一象限,直线MA与MF的倾斜角分别为 α_1 , α_2 ,则 $2\alpha_1+\alpha_2$ 的值为

- A. $\frac{\pi}{2}$ B. $\frac{2\pi}{3}$ C. π

- D. 与 M 位置有关
- 二、填空题(本题共4小题,每小题5分,共20分)

13. 为美化校园, 创建读书角, 同学将莫言的 3 部作品《红高粱》《酒国》《蛙》随机地排在书架上,《蛙》 恰好放在三本书中间的概率是

14. 己知变量 x, y 满足: $\{y \le 2x , y \mid z = x^2 + (y-1)^2 \text{ 的最小值为}_{\underline{}}$

15. 北宋著名建筑学家李诫编写了一部记录中国古代建筑营造规范的书《营造法式》,其中说到"方一百 其斜一百四十有一",即一个正方形的边长与它的对角线的比是1:1.414,接近 $1:\sqrt{2}$.如图,该图由等腰直 角三角形拼接而成,以每个等腰直角三角形斜边中点作为圆心,斜边的一半为半径作一个圆心角是90°

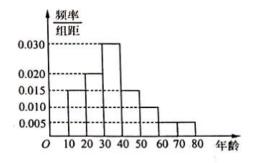
的圆弧,所得弧线称为 $\sqrt{2}$ 螺旋线,称公比为 $\sqrt{2}$ 的数列为 $\sqrt{2}$ 等比数列.

已知 $\sqrt{2}$ 等比数列 $\{a_n\}$ 的前n项和为 S_n ,满足 $S_{n+2}=2S_n+2(1+\sqrt{2})$.若

 $b_n = \log_{\sqrt{2}} a_n$,且 $\sum_{i=1}^{6} \frac{1}{4b^2 - 1} \le 10^{\lambda - 5}$,则 λ 的最小整数为_______.(参考

数据: $\lg 2 \approx 0.3010$, $\lg 3 \approx 0.4771$)

- 16. f(x)是定义在R上周期为 4 的函数,且 $f(x) = \begin{cases} 2\sqrt{1-x^2}, x \in (-1,1] \\ 1-|x-2|, x \in (1,3] \end{cases}$,则下列说法中正确的是_____.
- ① f(x) 的值域为[0,2]②当 $x \in (3,5]$ 时, $f(x) = 2\sqrt{-x^2 + 8x 15}$ ③ f(x)图象的对称轴为直线 $x = 4k, k \in Z$
- ④方程3f x = x恰有5个实数解
- 三、解答题(本大题分必考题和选考题两部分,第 17 题~第 21 题为必考题,每个试题考生都必须作答. 第 22 题~第 23 题为选考题,考生根据要求作答.满分 70 分,解答应写出文字说明,证明过程或演算过程) 17. (12 分) 设函数 $f(x) = \vec{m} \cdot \vec{n}$,其中向量 $\vec{m} = (2\cos x, 1)$, $\vec{n} = (\cos x, \sqrt{3}\sin 2x)$.
- (1) 求函数 f(x) 的最小正周期与单调递减区间;
- (2) 在 $\triangle ABC$ 中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1, $\triangle ABC$ 的面积为 $\frac{\sqrt{3}}{2}$,判断 $\triangle ABC$ 的形状,并说明理由.
- 18. (12分)某省举办线上万人健步走活动,希望带动更多的人参与到全民健身中来,以更加强健的体魄、更加优异的成绩,向中国共产党百年华诞献礼.为了解群众参与健步走活动的情况,随机从参与活动的某支队伍中抽取了60人,将他们的年龄分成7段: [10,20),[20,30),[30,40), [40,50) [50,60) [50,70] [70,80]后得到如图所示的频率分布直方图.
- (1) 以各组的区间中点值代表各组取值的平均水平, 求这60人年龄的平均数;
- (2) 一支 200 人的队伍,男士占其中的 $\frac{3}{8}$,40 岁以下的男士和女士分别为 30 和 70 人,请补充完整 2×2 列 联表,并通过计算判断是否有 95% 的把握认为 40 岁以下的群众是否参与健步走活动与性别有关.

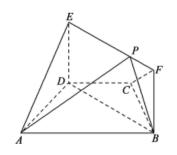


	40岁以下	40 岁以上	合计
男士	30		
女士	70		
合计			200

附:
$$K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

$P(K^2 \geqslant k_0)$	 0.05	0.025	0.010	0.005	0.001
k_0	 3.841	5.024	6.635	7.879	10.828

- 19. (12 分)如图,在梯形 *ABCD*中, *AB//CD*, *AD=DC=CB=*1, ∠*BCD=*120°,四边形 *BFED* 为矩形,平面 *BFED* ⊥平面 *ABCD*, *BF=*1.
- (1) 求证: BD 上平面 AED, AD 上平面 BDEF;
- (2) 点 P 在线段 EF 上运动, 求三棱锥 C-PBD 的体积。



- 20. (12 分) 已知 F_1 , F_2 分别为椭圆 C : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0)的左、右焦点,椭圆上任意一点 P 到焦点距离的最小值与最大值之比为 $\frac{1}{3}$,过 F_1 且垂直于长轴的椭圆 C 的弦长为 3 .
- (1) 求椭圆C的标准方程:
- (2) 过 F_1 的直线与椭圆C相交的交点A、B与右焦点 F_2 所围成的三角形的内切圆面积是否存在最大值?若存在,试求出最大值;若不存在,说明理由.
- 21. (12 分) 设函数 $f(x) = \frac{\ln x}{x-1}$.
- (1) 求f(x)的单调区间;
- (2) 如果当x>0,且 $x\neq 1$ 时, $\frac{\ln x}{x+1} \frac{k}{x} > f(x)$ 恒成立,求k的取值范围.

请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号 22. [选修 4-4: 坐标系与参数方程] (10 分)

在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程

为
$$\rho \sin^2 \theta = 2a \cos \theta (a > 0)$$
,过点 $P(-2,-4)$ 的直线 l 的参数方程为
$$\begin{cases} x = -2 + \frac{\sqrt{2}}{2}t \\ y = -4 + \frac{\sqrt{2}}{2}t \end{cases}$$
(t 为参数),直线 l 与曲

线C相交干A, B两点.

- (1) 写出曲线C的直角坐标方程和直线l的普通方程;
- (2) 若 $|PA| \cdot |PB| = |AB|^2$, 求a的值.
- 23. [选修 4-5: 不等式选讲] (10 分)

已知函数g(x) = |x-2|, f(x) = |x-a|.

- (1) 当a=1时,解不等式 $g(x)-f(x)-\frac{1}{2}>0$;
- (2) 若正数 a, b, c, d满足 $a^2+b^2=g(4)$, $c^2+d^2=1$, 求 ac+bd 的最大值.

树德中学高 2019 级高三上学期 10 月阶段性测试数学(文科) 试题参考答案

1-12 CBDCC DAABD BC

13.
$$\frac{1}{3}$$

14.
$$\frac{1}{5}$$

13.
$$\frac{1}{3}$$
 14. $\frac{1}{5}$ 15. 5 16. 124

17. (1)
$$f(x) = \vec{m} \cdot \vec{n} = 2\cos^2 x + \sqrt{3}\sin 2x = \cos 2x + \sqrt{3}\sin 2x + 1 = 2\sin(2x + \frac{\pi}{6}) + 1$$
,

所以最小正周期是
$$T = \frac{2\pi}{2} = \pi$$
, $2k\pi + \frac{\pi}{2} \le 2x + \frac{\pi}{6} \le 2k\pi + \frac{3\pi}{2}$, 解得 $k\pi + \frac{\pi}{6} \le x \le k\pi + \frac{2\pi}{3}$,

减区间是
$$[k\pi + \frac{\pi}{6}, k\pi + \frac{2\pi}{3}], k \in \mathbb{Z}$$
;

(2)
$$\pm$$
 (1) $f(A) = 2\sin(2A + \frac{\pi}{6}) + 1 = 2$, $\sin(2A + \frac{\pi}{6}) = \frac{1}{2}$,

因为
$$A \in (0,\pi)$$
,所以 $2A + \frac{\pi}{6} \in (\frac{\pi}{6}, \frac{13\pi}{6})$,所以 $2A + \frac{\pi}{6} = \frac{5\pi}{6}$, $A = \frac{\pi}{3}$,

$$S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{1}{2} \times 1 \times c \times \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}, \quad c = 2,$$

$$a^2 = b^2 + c^2 - 2bc \cos A = 1 + 4 - 2 \times 1 \times 2 \times \frac{1}{2} = 3$$
, $c^2 = a^2 + b^2$, $C = \frac{\pi}{2}$, 所以 $\triangle ABC$ 是直角三角形.

18. 解: (1) 这60 人年龄的平均数为

 $15 \times 0.15 + 25 \times 0.2 + 35 \times 0.3 + 45 \times 0.15 + 55 \times 0.1 + 65 \times 0.05 + 75 \times 0.05 = 37$

(2) 由题意队伍中男士共75人,女士125人,则2×2列联表如下:

	40 岁以下	40 岁以上	合计
男士	30	45	75
女士	70	55	125
合计	100	100	200

$$K^{2} = \frac{200 \times (30 \times 55 - 70 \times 45)^{2}}{100 \times 100 \times 75 \times 125} = 4.8 \quad \therefore 4.8 \quad 3.8$$

所以,有95%的把握认为40岁以下的群众是否参与健步走活动与性别有关.

19. (1) 证明, 在梯形 *ABCD* 中,

- AB/CD, AD = DC = CB = 1, $\angle BCD = 120^{\circ}$,
- $\therefore \angle CDB = \angle CBD = 30^{\circ}, \ \angle ADC = \angle DCB = 120^{\circ}, \ \therefore \angle ADB = 90^{\circ}, \ \therefore AD \perp BD.$
- ∵平面 BFED ⊥ 平面 ABCD , 平面 BFED 平面 ABCD = BD , DE 平面 BFED , DE ↓ DB ,
- 又 $: AD \cap DE = D$, $: BD \perp$ 平面 ADE.

又四边形 BDEF 是矩形, $\therefore ED \perp BD$, $\therefore ED \perp$ 平面 ABCD, $\therefore ED \perp AD$,

 $:: ED \cap BD = D$, ∴ $AD \perp \neg \exists BDEF$.

(2)
$$V_{C-PBD} = V_{P-BCD} = \frac{1}{3} \times \frac{1}{2} \times 1 \times 1 \times \frac{\sqrt{3}}{2} \times 1 = \frac{\sqrt{3}}{12}$$

20.解: (1) 由题意,椭圆上任意一点P到焦点距离的最小值与最大值之比为 $\frac{1}{3}$,

可得
$$(a-c)$$
: $(a+c)=\frac{1}{3}$, 即 $a=2c$,

又由过 F_1 且垂直于长轴的椭圆C的弦长为3,可得 $\frac{2b^2}{a} = \frac{2(a^2 - c^2)}{a} = 3$,

联立方程组,可得: a=2, c=1, 所以 $b^2=a^2-c^2=3$

故椭圆 C 的标准方程为 $\frac{x^2}{4} + \frac{y^2}{3} = 1$.

(2) 设 $\triangle ABF_2$ 的内切圆半径为r,可得 $S_{\triangle ABF_2} = \frac{1}{2} (|AF_2| + |AB| + |BF_2|) \cdot r$,

又因为 $|AF_2| + |AB| + |BF_2| = 8$, 所以 $S_{\triangle ABF_2} = 4r$,

要使 $\triangle ABF_2$ 的内切圆面积最大,只需 $S_{\triangle ABF_2}$ 的值最大,

由题意直线l斜率不为0,设 $A(x_1,y_1)$, $B(x_2,y_2)$,直线l:x=my-1,

联立方程组
$$\begin{cases} \frac{x^2}{4} + \frac{y^2}{3} = 1\\ x = my - 1 \end{cases}$$
, 整理得 $(3m^2 + 4)y^2 - 6my - 9 = 0$,

易得
$$\Delta > 0$$
,且 $y_1 + y_2 = \frac{6m}{3m^2 + 4}$, $y_1 \cdot y_2 = \frac{-9}{3m^2 + 4}$,

$$\text{FIT IN } S_{\triangle ABF_2} = \frac{1}{2} \left| F_1 F_2 \right| \cdot \left| y_1 - y_2 \right| = \sqrt{\left(y_1 + y_2 \right)^2 - 4 y_1 \cdot y_2} = \sqrt{\frac{36m^2}{\left(3m^2 + 4 \right)^2} + \frac{36}{3m^2 + 4}} = \frac{12\sqrt{m^2 + 1}}{3\left(m^2 + 1 \right) + 1} ,$$

设
$$t = \sqrt{m^2 + 1} \ge 1$$
, 则 $S_{\Delta ABF_2} = \frac{12t}{3t^2 + 1} = \frac{12}{3t + \frac{1}{t}}$, 设 $y = 3t + \frac{1}{t}(t \ge 1)$, 可得 $y' = 3 - \frac{1}{t^2} > 0$,

所以当t=1,即m=0时, $S_{\triangle ABF_2}$ 的最大值为3,此时 $r=\frac{3}{4}$,

所以 $\triangle ABF_2$ 的内切圆面积最大为 $\frac{9\pi}{16}$

21.#\textbf{R}: (1)
$$f'(x) = \frac{\frac{x-1}{x} - \ln x}{(x-1)^2} = \frac{1 - \frac{1}{x} - \ln x}{(x-1)^2} \cdot \Leftrightarrow h(x) = 1 - \frac{1}{x} - \ln x \cdot \therefore h'(x) = \frac{1}{x^2} - \frac{1}{x} = \frac{1-x}{x^2}.$$

当x ∈ (0,1)时,∴h'(x) > 0,∴h(x) 在 (0,1) 上单调递增.

当 $x \in (1,+\infty)$ 时,∴h'(x) < 0,∴h(x) 在 $(1,+\infty)$ 上单调递减.

∴ $\exists x \in (0,+\infty)$ 財, $h(x) \le h(1) = 0$. ∴ $\exists x \in (0,1) \cup (1,+\infty)$ 財, f'(x) < 0.

 $\therefore f(x)$ 单调递减区间为(0,1), $(1,+\infty)$,没有单调递增区间.

(2)
$$\therefore \stackrel{\text{\tiny μ}}{=} x > 0 \perp x \neq -1 \text{ pt}, \quad \frac{\ln x}{x+1} - \frac{k}{x} > f(x), \quad \therefore \frac{\ln x}{x+1} - \frac{\ln x}{x-1} - \frac{k}{x} > 0,$$

$$\therefore \frac{1}{x^2 - 1} \left(2 \ln x + \frac{x^2 - 1}{x} k \right) < 0. \Leftrightarrow g(x) = 2 \ln x + \left(x - \frac{1}{x} \right) k, \quad g(1) = 0,$$

$$\therefore \stackrel{\triangle}{=} x \in (0,1)$$
 財, $\frac{1}{x^2 - 1} < 0$, $\stackrel{\triangle}{=} x \in (1,+\infty)$ 財, $\frac{1}{x^2 - 1} > 0$.

$$\therefore$$
 当 $x \in (0,1)$ 时, $g(x) > 0$,当 $x \in (1,+\infty)$ 时, $g(x) < 0$.

$$g'(x) = \frac{2}{x} + \left(1 + \frac{1}{x^2}\right)k, \quad \text{iff } g'(1) = 2 + 2k = 0 \ \text{⟨#} \ k = -1,$$

$$\stackrel{\cong}{=} k \le -1 \text{ B}, \quad g'(x) = \frac{2}{x} + \left(1 + \frac{1}{x^2}\right)k \le \frac{2}{x} - \left(1 + \frac{1}{x^2}\right) = -\frac{x^2 - 2x + 1}{x^2} = -\frac{\left(x - 1\right)^2}{x^2} \le 0.$$

 $\therefore g(x)$ 在 $(0,+\infty)$ 单调递减,满足条件当 $x \in (0,1)$ 时,g(x) > 0,当 $x \in (1,+\infty)$ 时,g(x) < 0.

 $k \ge 0$ 时, x > 0时, g'(x) > 0, $g(x) 在 (0,+\infty)$ 上是增函数, 不合题意,

-1 < k < 0时,由 g'(x) = 0得 $kx^2 + 2x + k = 0$, $\Delta = 4 - 4k^2 > 0$,此方程有两个不等实根 x_1, x_2 ,

$$\begin{cases} x_1 + x_2 = -\frac{2}{k}, & \text{因此 } x_1 > 0, x_2 > 0, \text{ 必有一根小于 1 另一根大于 1, 不妨设 } 0 < x_1 < 1 < x_2, \\ x_1 x_2 = 1 & \end{cases}$$

则 $x_1 < x < x_2$ 时, g'(x) > 0 , g(x) 在 (x_1, x_2) 上单调递增,不合题意.

综上, $k \le -1$.

22. 解: (1) 由 $\rho \sin^2 \theta = 2a \cos \theta (a > 0)$ 得: $\rho^2 \sin^2 \theta = 2a \rho \cos \theta$,

∴曲线
$$C$$
 的直角坐标方程为: $y^2 = 2ax$, 由
$$\begin{cases} x = -2 + \frac{\sqrt{2}}{2}t \\ y = -4 + \frac{\sqrt{2}}{2}t \end{cases}$$
 消去 t 得: $y + 4 = x + 2$,

:.直线l的普通方程为: y=x-2.

(2) 直线
$$l$$
的参数方程为
$$\begin{cases} x = -2 + \frac{\sqrt{2}}{2}t \\ y = -4 + \frac{\sqrt{2}}{2}t \end{cases}$$
 (t 为参数),代入 $y^2 = 2ax$,得到 $t^2 - 2\sqrt{2}(4+a)t + 8(4+a) = 0$,

设A, B对应的参数分别为 t_1 , t_2 , 则 t_1 , t_2 是方程的两个解,

由韦达定理得: $t_1+t_2=2\sqrt{2}(4+a)$, $t_1t_2=8(4+a)$, 因为 $|PA|\cdot |PB|=|AB|^2$,

所以 $(t_1-t_2)^2 = (t_1+t_2)^2 - 4t_1t_2 = t_1t_2$, 解得 a=1.

23.解: (1) $\stackrel{\text{def}}{=} a = 1$ ft, $g(x) - f(x) - \frac{1}{2} > 0$, $\mathbb{E}|x - 2| - |x - 1| > \frac{1}{2}$,

当 $x \le 1$ 时, $2-x-(1-x)>\frac{1}{2}$,即 $1>\frac{1}{2}$ 恒成立,故 $x \le 1$,

当1 < x < 2时, $-(x-2)-(x-1) > \frac{1}{2}$,即 $3-2x > \frac{1}{2}$,解得: $1 < x < \frac{5}{4}$,

当 $x \ge 2$ 时, $(x-2)-(x-1)>\frac{1}{2}$, $-1>\frac{1}{2}$ 不成立,不等式无解,

综上,不等式的解集是 $\left\{x \mid x < \frac{5}{4}\right\}$.

(2) 由题意得: $a^2+b^2=g(4)=|4-2|=2$, 且 $c^2+d^2=1$,

$$(ac+bd)^2 = (ac)^2 + 2abcd + (bd)^2 \le (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2 = (a^2+b^2)(c^2+d^2) = 2, \quad (ac+bd) \le \sqrt{2}.$$

$$\therefore a$$
 , b , c , d 都是正数, \therefore 当且仅当 $a=b=1$, $c=d=\frac{\sqrt{2}}{2}$ 时取"=", $ac+bd$ 的最大值是 $\sqrt{2}$.